| eix | = | cos x + i sin x |
| Substituting i | = | – i, we have |
| e– ix | = | cos x – i sin x |
| cosh(ix) | = |
... by definition |
| = | cos x ... from Euler's formulae above | |
| sinh(ix) | = |
= i sin x |
| ∴ We have | ||
| I. a) cosh (ix) | = | cos x |
| b) sinh (ix) | = | i sin x |
| c) tanh(ix) | = | i tan x |
| II. a) cosh(x + iy) | = | cosh x . cosy + i sinh x . sin y |
| b) sinh(x + iy) | = | sinh x . cosy + i cosh x . sin y |
| III. a) cosh x | = | cos(ix) |
| b) sinh x | = | – i sin(ix) |
| c) tanh x | = | – i tan(ix) |
z representing a complex number, the functions sinh z and cosh z are said to be holomorphic or analytic(see below figures).
