eix | = | cos x + i sin x |
Substituting i | = | – i, we have |
e– ix | = | cos x – i sin x |
cosh(ix) | = | ... by definition |
= | cos x ... from Euler's formulae above | |
sinh(ix) | = | = i sin x |
∴ We have | ||
I. a) cosh (ix) | = | cos x |
b) sinh (ix) | = | i sin x |
c) tanh(ix) | = | i tan x |
II. a) cosh(x + iy) | = | cosh x . cosy + i sinh x . sin y |
b) sinh(x + iy) | = | sinh x . cosy + i cosh x . sin y |
III. a) cosh x | = | cos(ix) |
b) sinh x | = | – i sin(ix) |
c) tanh x | = | – i tan(ix) |
z representing a complex number, the functions sinh z and cosh z are said to be holomorphic or analytic(see below figures).