Given g(x) | = | [f(2 f(x) + 2)]2 |
⇒ g'(x) | = | 2 f(2 f(x) + 2).f '(2 f(x) + 2).2f '(x) |
Substituting x | = | 0, |
⇒ g'(0) | = | 2f(2 f(0) + 2).f '(2f(0) + 2).2f '(0) |
= | 2f(0).f '(0).2f '(0) (∴ f(0) = –1 and f '(0) = 1) | |
= | 2(–1)(1).2(1) = – 4 |
(ii) y | = | exp (cos3(tan x3)2) |
![]() |
= | exp(cos3(tan x3)2).![]() |
= | y.3 cos2(tan x3)2.![]() |
|
= | 3y cos2(tan x3)2 (– sin(tan
x3)2).![]() |
|
= | – 3y cos2(tan x3)2 sin(tan x3)2) (2 tan (x3).sec2 x3).3x2 | |
= | – 18y x2 cos2(tan x3)2.sin(tan x3)2 tan(x3) sec2 x3. |