| Given g(x) | = | [f(2 f(x) + 2)]2 |
| ⇒ g'(x) | = | 2 f(2 f(x) + 2).f '(2 f(x) + 2).2f '(x) |
| Substituting x | = | 0, |
| ⇒ g'(0) | = | 2f(2 f(0) + 2).f '(2f(0) + 2).2f '(0) |
| = | 2f(0).f '(0).2f '(0) (∴ f(0) = –1 and f '(0) = 1) | |
| = | 2(–1)(1).2(1) = – 4 |

| (ii) y | = | exp (cos3(tan x3)2) |
![]() |
= | exp(cos3(tan x3)2).
(cos3(tan x3)2) |
| = | y.3 cos2(tan x3)2. cos(tan
x3)2 |
|
| = | 3y cos2(tan x3)2 (– sin(tan
x3)2). (tan
x3)2 |
|
| = | – 3y cos2(tan x3)2 sin(tan x3)2) (2 tan (x3).sec2 x3).3x2 | |
| = | – 18y x2 cos2(tan x3)2.sin(tan x3)2 tan(x3) sec2 x3. |
.




at (2, 1)



= cosy –
= – x
siny + cosx – 1


+ 2y
+ y(–
sinx) +
cosx.
= (1 +
y)cosx +
.sinx
{1 + 2y + cosx
– sinx} = (1 + y)cosx + y sinx
for x =
–1 and y = 3