From the given figure | ||
∠POR | = | ∠POQ + ∠QOR |
= | 30° + 30° | |
= | 60° |
∠QPR = ∠QSR (angles in the same
segment of the circle)
In ΔPQR, |
||
∠QPR + ∠PQR + ∠PRQ | = | 180° |
∠QPR + 65° + 15° | = | 180° |
∠QPR | = | 180° – 80° |
∠QPR | = | 100° |
∠QSR | = | 100° |
Sol:
In ∠RST, |
||
∠RST + ∠SRT | = | ∠RTQ (exterior angle) |
∠RST + 30° | = | 120° |
∠RST | = | 90° |
∠QPR | = | ∠RST (angles in the same segment of a circle) |
∴ ∠QPR | = | 90° |
AB | = | AC [given] |
∠ADB | = | ∠ADC [each equal to 90°] |
AD | = | AD [common] |
Δ ADB | ≅ | Δ ADC [By SAS-congruence] |
Hence, BD = CD [By cpct]. |
OB | = | OC [radii of the same circle] |
OD | = | OD [Common] |
∴ Δ OBD | ≅ | Δ OCD |
⇒ ∠BOD | = | ∠COD [By RHS-congruence] |
⇒ ∠BOD | = | ∠BOC |
⇒ ∠BOD | = | ∠A [∵ ∠A = ∠BOC] |